If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2-35z=0
a = 6; b = -35; c = 0;
Δ = b2-4ac
Δ = -352-4·6·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-35}{2*6}=\frac{0}{12} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+35}{2*6}=\frac{70}{12} =5+5/6 $
| 2(3x-4)=5(x+10) | | 4x-24=6x+14 | | (8/7x)-6=x+7 | | 8x-28=6x+24 | | X+2/5x-2/2x=3/20 | | ƒ(x)=(-6)2+8(-6)+10 | | 5(w+68)=80 | | -7+4x=2(x-6) | | X-173=100+14x | | 5(x-4)^4=45 | | Y=-2.7x+120 | | ƒ(-6)=x2+8x+10 | | 23-3j=14 | | 4x-x=99 | | 5n+3=2(n+4)-3n | | 3x-21=29+x | | 42=9b-18 | | 22x-5=2(1.4x+3) | | 1t-19=17 | | 1n+11=20 | | 10y+10=70 | | 4*x-5+2=x+3 | | 20x+8=21x+10 | | 3(2+x)+7=2x+4 | | 5w=(4) | | 4-10b=1.5;b=0.25= | | A=b=17 | | 4(3x+x)+7-5x=8+(-5)(5x-6x)=23 | | 45+83+x=180 | | 46+83+45+x=180 | | 2(x+4(=3(2x+1) | | 2+1+1x7=0 |